Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells

Identifieur interne : 000E97 ( Main/Repository ); précédent : 000E96; suivant : 000E98

Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells

Auteurs : RBID : Pascal:14-0029126

Descripteurs français

English descriptors

Abstract

ZnO nanorod (NR) arrays are considered to be suitable for application in flexible photovoltaic devices due to the high surface-to-volume ratio provided by the one-dimensional nanostructure. Hierarchical ZnO NRs were grown on flexible ITO/PEN substrates by sputtering a compact ZnO seed layer followed by chemical bath deposition. The effect of ZnO NR growth with the variation of the seed layer thickness (50, 100, 300, 500 and 800 nm) was studied. It has been found that by varying the seed layer thickness, the individual rod diameter, density and alignment can be controlled. The SEM images confirmed that relatively thin seed layers give rise to more dense films, whereas thick seed layers result in less dense films. The applications of flexible ZnO NR electrodes were tested by employing them in dye-sensitised solar cells (DSSC). The performance of flexible DSSCs was evaluated by studying the key cell parameters. The effect of the seed layer thickness on DSSC performance was investigated. It has been found that the overall cell efficiency increased when the seed layer thickness was varied from 50 to 500 nm, whereas sharp decrease in efficiency was observed when the thickness was further increased to 800 nm. It was found that a seed layer thickness of 500 nm gave the highest overall efficiency of 0.38 % and incident photon-to-electron conversion efficiency of 6.5 %. As well as having good electrical properties, ZnO NR films grown on ITO/PEN by this method have excellent reproducibility, and NR growth is readily controllable. This shows that these films have a wide range of potential applications including flexible energy harvesting and electronic devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0029126

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells</title>
<author>
<name sortKey="Nirmal Peiris, T A" uniqKey="Nirmal Peiris T">T. A. Nirmal Peiris</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Loughborough LE11 3TU</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Alessa, Hussain" uniqKey="Alessa H">Hussain Alessa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Loughborough LE11 3TU</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sagu, Jagdeep S" uniqKey="Sagu J">Jagdeep S. Sagu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Loughborough LE11 3TU</wicri:noRegion>
</affiliation>
</author>
<author>
<name>IJAZ AHMAD BHATTI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Chemistry & Biochemistry, University of Agriculture</s1>
<s2>Faisalabad 38040</s2>
<s3>PAK</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Pakistan</country>
<wicri:noRegion>Faisalabad 38040</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Isherwood, Patrick" uniqKey="Isherwood P">Patrick Isherwood</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Electrical, Electronic and Systems Engineering, Loughborough University</s1>
<s2>Loughborough LE11 3TU</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Loughborough LE11 3TU</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Upul Wijayantha, K G" uniqKey="Upul Wijayantha K">K. G. Upul Wijayantha</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Loughborough LE11 3TU</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0029126</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0029126 INIST</idno>
<idno type="RBID">Pascal:14-0029126</idno>
<idno type="wicri:Area/Main/Corpus">000240</idno>
<idno type="wicri:Area/Main/Repository">000E97</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1388-0764</idno>
<title level="j" type="abbreviated">J. nanopart. res.</title>
<title level="j" type="main">Journal of nanoparticle research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arrays</term>
<term>Chemical bath deposition</term>
<term>Crystal seeds</term>
<term>Electrical properties</term>
<term>Energetic efficiency</term>
<term>Energy conversion</term>
<term>Ethylene naphthalate copolymer</term>
<term>Growth mechanism</term>
<term>Layer thickness</term>
<term>Nanomaterial synthesis</term>
<term>Nanorod</term>
<term>Nanostructured materials</term>
<term>One dimensional structure</term>
<term>Photovoltaic cell</term>
<term>Scanning electron microscopy</term>
<term>Solar cells</term>
<term>Sputtering</term>
<term>Thick films</term>
<term>Thin films</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Germe cristallin</term>
<term>Epaisseur couche</term>
<term>Synthèse nanomatériau</term>
<term>Cellule solaire</term>
<term>Nanobâtonnet</term>
<term>Nanomatériau</term>
<term>Réseau(arrangement)</term>
<term>Dispositif photovoltaïque</term>
<term>Structure 1 dimension</term>
<term>Ethylène naphtalate copolymère</term>
<term>Pulvérisation irradiation</term>
<term>Dépôt bain chimique</term>
<term>Mécanisme croissance</term>
<term>Microscopie électronique balayage</term>
<term>Couche épaisse</term>
<term>Couche mince</term>
<term>Propriété électrique</term>
<term>Rendement énergétique</term>
<term>Conversion énergie</term>
<term>ZnO</term>
<term>Substrat ZnO</term>
<term>Substrat oxyde d'indium et de zinc</term>
<term>Substrat InSnO</term>
<term>8116</term>
<term>8460J</term>
<term>8107D</term>
<term>8107B</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Rendement énergétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">ZnO nanorod (NR) arrays are considered to be suitable for application in flexible photovoltaic devices due to the high surface-to-volume ratio provided by the one-dimensional nanostructure. Hierarchical ZnO NRs were grown on flexible ITO/PEN substrates by sputtering a compact ZnO seed layer followed by chemical bath deposition. The effect of ZnO NR growth with the variation of the seed layer thickness (50, 100, 300, 500 and 800 nm) was studied. It has been found that by varying the seed layer thickness, the individual rod diameter, density and alignment can be controlled. The SEM images confirmed that relatively thin seed layers give rise to more dense films, whereas thick seed layers result in less dense films. The applications of flexible ZnO NR electrodes were tested by employing them in dye-sensitised solar cells (DSSC). The performance of flexible DSSCs was evaluated by studying the key cell parameters. The effect of the seed layer thickness on DSSC performance was investigated. It has been found that the overall cell efficiency increased when the seed layer thickness was varied from 50 to 500 nm, whereas sharp decrease in efficiency was observed when the thickness was further increased to 800 nm. It was found that a seed layer thickness of 500 nm gave the highest overall efficiency of 0.38 % and incident photon-to-electron conversion efficiency of 6.5 %. As well as having good electrical properties, ZnO NR films grown on ITO/PEN by this method have excellent reproducibility, and NR growth is readily controllable. This shows that these films have a wide range of potential applications including flexible energy harvesting and electronic devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1388-0764</s0>
</fA01>
<fA03 i2="1">
<s0>J. nanopart. res.</s0>
</fA03>
<fA05>
<s2>15</s2>
</fA05>
<fA06>
<s2>12</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NIRMAL PEIRIS (T. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ALESSA (Hussain)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SAGU (Jagdeep S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>IJAZ AHMAD BHATTI</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ISHERWOOD (Patrick)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>UPUL WIJAYANTHA (K. G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Chemistry, Loughborough University</s1>
<s2>Loughborough LE11 3TU</s2>
<s3>GBR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry & Biochemistry, University of Agriculture</s1>
<s2>Faisalabad 38040</s2>
<s3>PAK</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Electrical, Electronic and Systems Engineering, Loughborough University</s1>
<s2>Loughborough LE11 3TU</s2>
<s3>GBR</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s2>2115.1-2115.10</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>28202</s2>
<s5>354000501624380270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0029126</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of nanoparticle research</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>ZnO nanorod (NR) arrays are considered to be suitable for application in flexible photovoltaic devices due to the high surface-to-volume ratio provided by the one-dimensional nanostructure. Hierarchical ZnO NRs were grown on flexible ITO/PEN substrates by sputtering a compact ZnO seed layer followed by chemical bath deposition. The effect of ZnO NR growth with the variation of the seed layer thickness (50, 100, 300, 500 and 800 nm) was studied. It has been found that by varying the seed layer thickness, the individual rod diameter, density and alignment can be controlled. The SEM images confirmed that relatively thin seed layers give rise to more dense films, whereas thick seed layers result in less dense films. The applications of flexible ZnO NR electrodes were tested by employing them in dye-sensitised solar cells (DSSC). The performance of flexible DSSCs was evaluated by studying the key cell parameters. The effect of the seed layer thickness on DSSC performance was investigated. It has been found that the overall cell efficiency increased when the seed layer thickness was varied from 50 to 500 nm, whereas sharp decrease in efficiency was observed when the thickness was further increased to 800 nm. It was found that a seed layer thickness of 500 nm gave the highest overall efficiency of 0.38 % and incident photon-to-electron conversion efficiency of 6.5 %. As well as having good electrical properties, ZnO NR films grown on ITO/PEN by this method have excellent reproducibility, and NR growth is readily controllable. This shows that these films have a wide range of potential applications including flexible energy harvesting and electronic devices.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Germe cristallin</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Crystal seeds</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Nanobâtonnet</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Nanorod</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Nanopalito</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Réseau(arrangement)</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Arrays</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Structure 1 dimension</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>One dimensional structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estructura 1 dimensión</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Ethylène naphtalate copolymère</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Ethylene naphthalate copolymer</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Etileno naftalato copolimero</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Dépôt bain chimique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Chemical bath deposition</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Depósito baño químico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche épaisse</s0>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thick films</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Propriété électrique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Electrical properties</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Rendement énergétique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Energetic efficiency</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Conversion énergie</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Energy conversion</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Substrat ZnO</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Substrat oxyde d'indium et de zinc</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Substrat InSnO</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8460J</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8107D</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>027</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E97 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000E97 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0029126
   |texte=   Effect of ZnO seed layer thickness on hierarchical ZnO nanorod growth on flexible substrates for application in dye-sensitised solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024